home *** CD-ROM | disk | FTP | other *** search
- #
- # $Id: stat.inc,v 1.2 1993/09/27 17:11:54 alex Exp $
- #
- # Library of Statistical Functions version 3.0
- #
- # Permission granted to distribute freely for non-commercial purposes only
- #
- # Copyright (c) 1991, 1992 Jos van der Woude, jvdwoude@hut.nl
-
- # If you don't have the gamma() and/or lgamma() functions in your library,
- # you can use the following recursive definitions. They are correct for all
- # values i / 2 with i = 1, 2, 3, ... This is sufficient for most statistical
- # needs.
- #logsqrtpi = log(sqrt(pi))
- #lgamma(x) = (x<=0.5)?logsqrtpi:((x==1)?0:log(x-1)+lgamma(x-1))
- #gamma(x) = exp(lgamma(x))
-
- # If you have the lgamma() function compiled into gnuplot, you can use
- # alternate definitions for some PDFs. For larger arguments this will result
- # in more efficient evalution. Just uncomment the definitions containing the
- # string `lgamma', while at the same time commenting out the originals.
- # NOTE: In these cases the recursive definition for lgamma() is NOT sufficient!
-
- # Some PDFs have alternate definitions of a recursive nature. I suppose these
- # are not really very efficient, but I find them aesthetically pleasing to the
- # brain.
-
- # Define useful constants
- fourinvsqrtpi=4.0/sqrt(pi)
- invpi=1.0/pi
- invsqrt2pi=1.0/sqrt(2.0*pi)
- log2=log(2.0)
- sqrt2=sqrt(2.0)
- sqrt2invpi=sqrt(2.0/pi)
- twopi=2.0*pi
-
- # define variables plus default values used as parameters in PDFs
- # some are integers, others MUST be reals
- a=1.0
- alpha=0.5
- b=2.0
- df1=1
- df2=1
- g=1.0
- lambda=1.0
- m=0.0
- mm=1
- mu=0.0
- nn=2
- n=2
- p=0.5
- q=0.5
- r=1
- rho=1.0
- sigma=1.0
- u=1.0
-
- #
- #define 1.0/Beta function
- #
- Binv(p,q)=exp(lgamma(p+q)-lgamma(p)-lgamma(q))
-
- #
- #define Probability Density Functions (PDFs)
- #
-
- # NOTE:
- # The discrete PDFs are calulated for all real values, using the int()
- # function to truncate to integers. This is a monumental waste of processing
- # power, but I see no other easy solution. If anyone has any smart ideas
- # about this, I would like to know. Setting the sample size to a larger value
- # makes the discrete PDFs look better, but takes even more time.
-
- # Arcsin PDF
- arcsin(x)=invpi/sqrt(r*r-x*x)
-
- # Beta PDF
- beta(x)=Binv(p,q)*x**(p-1.0)*(1.0-x)**(q-1.0)
-
- # Binomial PDF
- #binom(x)=n!/(n-int(x))!/int(x)!*p**int(x)*(1.0-p)**(n-int(x))
-
- bin_s(x)=n!/(n-int(x))!/int(x)!*p**int(x)*(1.0-p)**(n-int(x))
- bin_l(x)=exp(lgamma(n+1)-lgamma(n-int(x)+1)-lgamma(int(x)+1)\
- +int(x)*log(p)+(n-int(x))*log(1.0-p))
- binom(x)=(n<50)?bin_s(x):bin_l(x)
-
- # Cauchy PDF
- cauchy(x)=b/(pi*(b*b+(x-a)**2))
-
- # Chi-square PDF
- #chi(x)=x**(0.5*df1-1.0)*exp(-0.5*x)/gamma(0.5*df1)/2**(0.5*df1)
- chi(x)=exp((0.5*df1-1.0)*log(x)-0.5*x-lgamma(0.5*df1)-df1*0.5*log2)
-
- # Erlang PDF
- erlang(x)=lambda**n/(n-1)!*x**(n-1)*exp(-lambda*x)
-
- # Extreme (Gumbel extreme value) PDF
- extreme(x)=alpha*(exp(-alpha*(x-u)-exp(-alpha*(x-u))))
-
- # F PDF
- f(x)=Binv(0.5*df1,0.5*df2)*(df1/df2)**(0.5*df1)*x**(0.5*df1-1.0)/\
- (1.0+df1/df2*x)**(0.5*(df1+df2))
-
- # Gamma PDF
- #g(x)=lambda**rho*x**(rho-1.0)*exp(-lambda*x)/gamma(rho)
- g(x)=exp(rho*log(lambda)+(rho-1.0)*log(x)-lgamma(rho)-lambda*x)
-
- # Geometric PDF
- #geometric(x)=p*(1.0-p)**int(x)
- geometric(x)=exp(log(p)+int(x)*log(1.0-p))
-
- # Half normal PDF
- halfnormal(x)=sqrt2invpi/sigma*exp(-0.5*(x/sigma)**2)
-
- # Hypergeometric PDF
- hypgeo(x)=(int(x)>mm||int(x)<mm+n-nn)?0:\
- mm!/(mm-int(x))!/int(x)!*(nn-mm)!/(n-int(x))!/(nn-mm-n+int(x))!*(nn-n)!*n!/nn!
-
- # Laplace PDF
- laplace(x)=0.5/b*exp(-abs(x-a)/b)
-
- # Logistic PDF
- logistic(x)=lambda*exp(-lambda*(x-a))/(1.0+exp(-lambda*(x-a)))**2
-
- # Lognormal PDF
- lognormal(x)=invsqrt2pi/sigma/x*exp(-0.5*((log(x)-mu)/sigma)**2)
-
- # Maxwell PDF
- maxwell(x)=fourinvsqrtpi*a**3*x*x*exp(-a*a*x*x)
-
- # Negative binomial PDF
- #negbin(x)=(r+int(x)-1)!/int(x)!/(r-1)!*p**r*(1.0-p)**int(x)
- negbin(x)=exp(lgamma(r+int(x))-lgamma(r)-lgamma(int(x)+1)+\
- r*log(p)+int(x)*log(1.0-p))
-
- # Negative exponential PDF
- nexp(x)=lambda*exp(-lambda*x)
-
- # Normal PDF
- normal(x)=invsqrt2pi/sigma*exp(-0.5*((x-mu)/sigma)**2)
-
- # Pareto PDF
- pareto(x)=x<a?0:b/x*(a/x)**b
-
- # Poisson PDF
- poisson(x)=mu**int(x)/int(x)!*exp(-mu)
- #poisson(x)=exp(int(x)*log(mu)-lgamma(int(x)+1)-mu)
- #poisson(x)=(x<1)?exp(-mu):mu/int(x)*poisson(x-1)
- #lpoisson(x)=(x<1)?-mu:log(mu)-log(int(x))+lpoisson(x-1)
-
- # Rayleigh PDF
- rayleigh(x)=lambda*2.0*x*exp(-lambda*x*x)
-
- # Sine PDF
- sine(x)=2.0/a*sin(n*pi*x/a)**2
-
- # t (Student's t) PDF
- t(x)=Binv(0.5*df1,0.5)/sqrt(df1)*(1.0+(x*x)/df1)**(-0.5*(df1+1.0))
-
- # Triangular PDF
- triangular(x)=1.0/g-abs(x-m)/(g*g)
-
- # Uniform PDF
- uniform(x)=1.0/(b-a)
-
- # Weibull PDF
- weibull(x)=lambda*n*x**(n-1)*exp(-lambda*x**n)
-
- #
- #define Cumulative Distribution Functions (CDFs)
- #
-
- # Arcsin CDF
- carcsin(x)=0.5+invpi*asin(x/r)
-
- # incomplete Beta CDF
- cbeta(x)=ibeta(p,q,x)
-
- # Binomial CDF
- #cbinom(x)=(x<1)?binom(0):binom(x)+cbinom(x-1)
- cbinom(x)=ibeta(n-x,x+1.0,1.0-p)
-
- # Cauchy CDF
- ccauchy(x)=0.5+invpi*atan((x-a)/b)
-
- # Chi-square CDF
- cchi(x)=igamma(0.5*df1,0.5*x)
-
- # Erlang CDF
- # approximation, using first three terms of expansion
- cerlang(x)=1.0-exp(-lambda*x)*(1.0+lambda*x+0.5*(lambda*x)**2)
-
- # Extreme (Gumbel extreme value) CDF
- cextreme(x)=exp(-exp(-alpha*(x-u)))
-
- # F CDF
- cf(x)=1.0-ibeta(0.5*df2,0.5*df1,df2/(df2+df1*x))
-
- # incomplete Gamma CDF
- cgamma(x)=igamma(rho,x)
-
- # Geometric CDF
- cgeometric(x)=(x<1)?geometric(0):geometric(x)+cgeometric(x-1)
-
- # Half normal CDF
- chalfnormal(x)=erf(x/sigma/sqrt2)
-
- # Hypergeometric CDF
- chypgeo(x)=(x<1)?hypgeo(0):hypgeo(x)+chypgeo(x-1)
-
- # Laplace CDF
- claplace(x)=(x<a)?0.5*exp((x-a)/b):1.0-0.5*exp(-(x-a)/b)
-
- # Logistic CDF
- clogistic(x)=1.0/(1.0+exp(-lambda*(x-a)))
-
- # Lognormal CDF
- clognormal(x)=cnormal(log(x))
-
- # Maxwell CDF
- cmaxwell(x)=igamma(1.5,a*a*x*x)
-
- # Negative binomial CDF
- cnegbin(x)=(x<1)?negbin(0):negbin(x)+cnegbin(x-1)
-
- # Negative exponential CDF
- cnexp(x)=1.0-exp(-lambda*x)
-
- # Normal CDF
- cnormal(x)=0.5+0.5*erf((x-mu)/sigma/sqrt2)
- #cnormal(x)=0.5+((x>mu)?0.5:-0.5)*igamma(0.5,0.5*((x-mu)/sigma)**2)
-
- # Pareto CDF
- cpareto(x)=x<a?0:1.0-(a/x)**b
-
- # Poisson CDF
- #cpoisson(x)=(x<1)?poisson(0):poisson(x)+cpoisson(x-1)
- cpoisson(x)=1.0-igamma(x+1.0,mu)
-
- # Rayleigh CDF
- crayleigh(x)=1.0-exp(-lambda*x*x)
-
- # Sine CDF
- csine(x)=x/a-sin(n*twopi*x/a)/(n*twopi)
-
- # t (Student's t) CDF
- ct(x)=(x<0.0)?0.5*ibeta(0.5*df1,0.5,df1/(df1+x*x)):\
- 1.0-0.5*ibeta(0.5*df1,0.5,df1/(df1+x*x))
-
- # Triangular PDF
- ctriangular(x)=0.5+(x-m)/g-(x-m)*abs(x-m)/(2.0*g*g)
-
- # Uniform CDF
- cuniform(x)=(x-a)/(b-a)
-
- # Weibull CDF
- cweibull(x)=1.0-exp(-lambda*x**n)
-